Solutions to Chapter 5 Assigned Problems:

1. $N=12 ; \mathrm{I} / \mathrm{YR}=\mathrm{YTM}=9 \% ; \mathrm{PMT}=1,000 \times .08=\$ 80 ; \mathrm{FV}=1,000 ; \mathrm{PV}=$ Price of the bond $=928.39$
2. $N=12 ; P V=-850 ; P M T=1,000 \times .10=\$ 100 ; F V=1,000 ; I / Y R=Y T M=12.47 \%$
3. $\mathrm{N}=7 ; \mathrm{I} / \mathrm{YR}=\mathrm{YTM}=8 ; \mathrm{PMT}=1,000 \times .09=\$ 90, \mathrm{FV}=1,000 ; \mathrm{PV}=$ Price of the Bond $=\$ 1,052.06$ Current Yield $=90 / 1,052.06=8.55 \%$
4. real rate $=3 \%$; Inflation premium $=3 \%$; two year rate $=6.3 \% ; \mathrm{MRP}=$

Two year rate $=$ real rate $+\mathrm{IP}+\mathrm{MRP}=6.3 \%$
$3 \%+3 \%+M R P=6.3 \%$
$\mathrm{MRP}=.3 \%$
7. $N=16 ; / / Y R=8.5 / 2=4.25 ; \mathrm{PMT}=50 ; F V=1,000$
$P V=-1,085.80$
8. $\mathrm{N}=10 \times 2 ; \mathrm{PV}=-1,100 ; \mathrm{PMT}=.08 / 2 \times 1,000=40 ; \mathrm{FV}=1,050 ; \mathrm{I} / \mathrm{YR}=3.24 \%$
$\mathrm{YTC}=3.24 \% \times 2=6.62 \%$
9. a .

1. 5% Bond $L: N=15 ; I / Y R=5 ; P M T=100, F V=1,000 ; P V=1,518.98$

Bond S: change inputs to $N=1, P V=\$ 1,047.62$
2. 8% Bond $L: N=15 ; I / Y R=8, P M T=100 ; F V=1,000 ; P V=1,171.19$

Bond S: change inputs N=1, PV=1,018.52
3. 12% Bond $L: N=15, P M T=100 ; F V=1,000, I / Y R=12 ; P V=863.78$

Bond S: change inputs $\mathrm{N}=1$; $\mathrm{PV}=982.14$
b. Think about the bond the matures in the next month. Its present value is influenced primarily by the maturity value coming due in a month. Even it interest rates were to double, the holder of this short term bond would get the maturity value plus coupon that is due at the end of the bond --- interest rates do not really matter at this point - maturity value does.
10. a.

1. $N=5 ; P V=-829 ; P M T=90 ; F V=1,000 ; I / Y R=13.98 \%$
2. Change inputs to $P V=-1,104 ; I / Y R=6.50 \%$
b. Yes, at a price of $\$ 829$ the yield to maturity of 13.9% is greater than your required rate of return of 12%. If your required rate of return were 12% you would be willing to buy the bond at a price below \$891.86.
3. $\mathrm{N}=7 ; \mathrm{PV}=-1,100 ; \mathrm{PMT}=60 ; \mathrm{FV}=1,000, \mathrm{I} / \mathrm{YR}=14.82 \%$

5-12 a. $N=20 ; P V=-1,100 ; P M T=60 ; F V=1,000 ; I / Y R=5.1849 \%$

However the annual rate is $5.1849 \% \times 2=10.3699 \%$
b. The current yield is: $\$ 120 / 1,100=10.91 \%$
c. YTM $=$ Current Yield + Capital Gains Yield
$10.37 \%=10.91 \%$ + Capital Loss Yield
-. 54\% = Capital Loss Yield
d. $N=8 ; P V=-1,100 ; P M T=60 ; F V=1,060, \mathrm{I} / \mathrm{YR}=5.0748^{*}$

So the annual yield to maturity would be $5.0748 \% \times 2=10.1495 \%$
$5-13 . \quad P V=974.42$
$\mathrm{I} / \mathrm{YR}=\mathrm{YTM}=8.6 \%$

5-14. Current Yield = Annual Interest / Current Price on the Bond $=\$ 110 / \$ 1,020=10.78 \%$
$5-15$. Need to calculate the bond's yield to call:
$N=10 ; P V=-1,353.54 ; P M T=70 ; F V=1,050 ;$ solve for $\mathrm{I} / \mathrm{YR}=3.24 \mathrm{~A} \%$

Therefore, the annual yield to call is: $3.24 \% \times 2=6.47 \%$

5-16		Percentage Change in Price due to	
	Price at 8\%	Price at 7 \%	a 1\% Change in Interest Rates
10\% Annual Coupon	$1,134.20$	$1,210.71$	6.75%
10-Year Zero Coupon Bond	463.19	508.35	9.75%
5-Year Zero Coupon Bond	680.58	712.99	4.76%
30 Year Zero Coupon Bond	99.38	131.37	32.19%
$\$ 100$ Perpetuity	1,250	$1,428.57$	14.29%

